
API Security: the Complete Guide
An eBook from Bright Security
March 2022

© myredfort.2022

What is API Security
An Application Programming Interface (API) allows software applications to
interact with each other. It is a fundamental part of modern software patterns,
such as microservices architectures.

API security is the process of protecting APIs from attacks. Because APIs are very
commonly used, and because they enable access to sensitive software functions
and data, they are becoming a primary target for attackers.

API security is a key component of modern web application security. APIs may
have vulnerabilities like broken authentication and authorization, lack of rate
limiting, and code injection. Organizations must regularly test APIs to identify
vulnerabilities, and address these vulnerabilities using security best practices.

This eBook presents several methods and tools for API security testing, and a
range of best practices that can help you secure your APIs. You will learn:

OWASP API Top 10 Security Threats:

• Broken Object-Level Authorization
• Broken User Authentication
• Excessive Data Exposure
• Lack of Resources and Rate Limiting
• Broken Function-Level Authorization
• Mass Assignment
• Security Misconfiguration
• Injection
• Improper Asset Management
• Insufficient Logging and Monitoring

REST API Security vs SOAP Security

GraphQL Security

Methods Of API Security Testing:

• Test for Parameter Tampering
• Test for Command Injection
• Test for API Input Fuzzing
• Test for Unhandled HTTP Methods

Top API Security Open Source Tools:

• Postman
• Swagger
• JMeter
• SoapUI
• Karate
• Fiddler

© myredfort.2022

API Security Best Practices:

• Identify Vulnerabilities

• Leverage OAuth

• Encrypt Data

• Use Rate Limiting and Throttling

• Use a Service Mesh

• Adopt a Zero-trust Philosophy

API Security with Bright

© myredfort.2022

OWASP API Top 10 Security Threats

The increase of API-related security threats in recent years has prompted

the Open Web Application Security Project (OWASP) to release the API

Security Top 10, which helps raise awareness of the most serious API

security issues affecting organizations These are:

API1:2019: Broken Object-Level Authorization

APIs often expose endpoints handling object identifiers. Any function that

accepts a user input and uses it to access a data source can create a Level

Access Control issue, widening the attack surface. You should carry out

object-level authorization checks for all such functions.

API2:2019: Broken User Authentication

Attackers often take advantage of incorrectly applied authentication

mechanisms. They may compromise an authentication token or exploit

flaws in implementation to pose as another user, on a one-time basis or

permanently. If the system’s ability to identify the client/user is

compromised, so is the overall API’s security.

API3:2019: Excessive Data Exposure

Developers often rely on the client side to filter the data before displaying it

to the user. This can create serious security issues—data must always be

filtered at the server side, and only the relevant information should be

delivered to the client side.

API4:2019: Lack of Resources and Rate Limiting

APIs often don’t restrict the number or size of resources that the client/user

can request. This can impact the performance of the API server, resulting in

Denial of Service (DoS), and exposing authentication vulnerabilities,

enabling brute force attacks.

API5:2019: Broken Function-Level Authorization

Authorization flaws often result from overly complex access control

policies, or if there is no clear separation between regular and

administrative functions. Attackers can exploit these vulnerabilities to gain

access to a user’s resources or perform administrative functions.

API6:2019: Mass Assignment

Mass assignment typically results from the binding of client-provided data

(i.e. JSON) to a data model based on an allowlist, without proper filtering of

properties. Attackers can modify object properties in a number of ways—

they can explore API endpoints, read the documentation, guess object

properties, or provide additional properties through request payloads.

© myredfort.2022

API7:2019: Security Misconfiguration
Security misconfiguration often results from inadequate default
configurations, ad-hoc or incomplete configurations, misconfigured HTTP
headers or inappropriate HTTP methods, insufficiently restrictive Cross-
Origin Resource Sharing (CORS), open cloud storage, or error messages
that contain sensitive information.

API8:2019: Injection
Injection flaws (including SQL injection, NoSQL injection, and command
injection) involve data that is sent to an interpreter from an untrusted source
via a command or query. Attackers can send malicious data to trick the
interpreter into executing dangerous commands, or allow the attacker to
access data without the necessary authorization.

API9:2019: Improper Asset Management
Compared to traditional web applications, APIs typically expose more
endpoints and thus require structured, up-to-date documentation. Issues
such as exposed debug endpoints and deprecated API versions can
increase the attack surface. This can be mitigated by creating an inventory
of deployed API versions and properly configured hosts.

API10:2019: Insufficient Logging and Monitoring
Attackers can take advantage of insufficient logging and monitoring, as well
as ineffective or lacking incident response integration, to persist in a
system, deepen their hold and extract or destroy more data. It typically
takes over 200 days to detect a persistent threat, and breaches are usually
discovered by an external party—highlighting the critical importance of
effective API monitoring.

REST API Security vs SOAP Security
There are two main architectural styles used in modern APIs:

SOAP—a highly structured message protocol that supports multiple
low-level protocols.

REST—a simpler approach to APIs using HTTP/S as the transport
protocol, and typically using JSON format for data transfer.
Both types of APIs support HTTP requests and responses and Secure
Sockets Layer (SSL), but the similarity ends there.

SOAP API Security:
• SOAP offers extensions to the protocol that address security matters

• SOAP is based on W3C and OASIS recommendations, including SAML
tokens, XML encryption, and XML signatures.

© myredfort.2022

• SOAP supports the Web Services (WS) specifications, which lets you use
security extensions like WS-Security, which provides enterprise-grade
security for web services

• SOAP supports WS-ReliableMessaging which provides built-in error
handling

REST API security:
• REST APIs do not have any built-in security capabilities—security

depends on the design of the API itself.

• Security must be built in for data transmission, deployment, and
interaction with clients

• REST APIs do not have built-in error handling and need to resend data
when an error occurs.

• A common architectural choice is to deploy REST APIs behind an API
gateway. Clients connect to the gateway, which acts as a proxy, not
directly to the REST API. This allows many security concerns to be
addressed by the API gateway.

In conclusion, SOAP APIs are more secure by design, but REST APIs can be
made secure, depending on their implementation and the architecture
selected.

GraphQL Security
GraphQL is a query language that describes how clients can request
information via an application programming interface (API). Developers can
use GraphQL syntax to request specific data and receive it from a single
source or multiple sources. Once a client defines the required data
structure for a request, a server returns data using that exact structure.

Since clients can craft highly complex queries, the server must be ready to
properly handle them. The server should be able to handle abusive queries
from malicious clients, as well as large queries by legitimate clients. If the
server does not handle these scenarios properly, the client might take the
server down.

Here are a several strategies that can help you mitigate GraphQL security
risks:

• Timeout – a timeout can help you defend against large queries. It is the
simplest strategy because it does not require the server to know any
details about incoming queries.

© myredfort.2022

The server only needs to know the maximum time allowed per query.

• Maximum query depth – can help you prevent clients from abusing

query depth. Maximum query depth is the analysis of a query

document’s abstract syntax tree (AST) to determine what is acceptable.

The GraphQL server can then use this depth to accept or reject requests.

• Query complexity – query depth is not always enough to understand the

scope of a GraphQL query. This usually happens when certain schema

fields are more complex to compute than others. Query complexity can

help you define the level of complexity of these fields, and restrict

queries that exceed a complexity threshold.

• Throttling – the above options can stop large queries, but they cannot

stop clients that make many medium-sized queries. For GraphQL, even a

few queries could be too much to handle, if queries are expensive. You

can determine the server time needed to complete each type of query,

and use this estimation to throttle queries.

Methods Of API Security Testing

You can use the following methods to manually test your APIs for security

vulnerabilities:

Test for Parameter Tampering

In most cases, parameters sent through API requests can be easily

tampered with. For example, by manipulating parameters, attackers can

change the amount of a purchase and receive products for free, or trick an

API into providing sensitive data that is not authorized for the user’s

account.

Parameter tampering is often performed using hidden form fields. You can

test for the presence of hidden fields using the browser element inspector.

If you find a hidden field, experiment with different values and see how your

API reacts.

Test for Command Injection

To test if your API is vulnerable to command injection attacks, try injecting

operating system commands in API inputs. Use operating system

commands appropriate to the operating system running your API server. It

is recommended to use a harmless operating system command which you

can observe on the server—for example, a reboot command.

For example, if your API displays content via a URL, you can append an

operating system command to the end of the URL to see if the command

is executed on the server:

https://vulnerablesite.com/view?name=userfile.txt;restart
© myredfort.2022

Test for API Input Fuzzing
Fuzzing means providing random data to the API until you discover a
functional or security problem. You should look for indications that the API
returned an error, processed inputs incorrectly, or crashed.
For example, if your API accepts numerical inputs, you can try very large
numbers, negative numbers, or zero. If it accepts strings, you can try random
SQL queries, system commands, or arbitrary non-text characters.

Test for Unhandled HTTP Methods
Web applications that communicate using APIs may use various HTTP
methods. These HTTP methods are used to store, delete, or retrieve data. If
the server doesn’t support the HTTP method, you will usually get an error.
However, this is not always the case. If the HTTP method is unsupported on
the server side, this creates a security vulnerability.
It is easy to test if HTTP methods are supported on the server side, by making
a HEAD request to an API endpoint that requires authentication. Try all the
common HTTP methods—POST, GET, PUT, PATCH, DELETE, etc.
Learn more in our guide to API security testing.

Top Open Source API Testing Tools
Securing production APIs, especially those that have a regular development
and release process, requires automated tools.

The following open source tools can help you design security-related test
cases, run them against API endpoints, and remediate issues you discover.
They can also discover business logic vulnerabilities, which can also be an
opening for attackers:

Postman is an API development platform. Its key features include:

• Automating manual API tests

• Integrating tests into the CI/CD pipeline

• Simulating expected behavior of API endpoints and responses

• Checking API performance and response times

• Enables collaboration between developers with built-in version control

© myredfort.2022

Swagger is an open source toolkit that can help you create RESTful APIs.
Its enables two API development styles:

• Top-down API design, letting you build an API in Swagger and then
generate code from specifications

• Bottom-up API design, in which Swagger takes existing code and
generates documentation about API operations, parameters and output.

JMeter is a load testing tool, which can also be used for security testing.
Key features include:

• Inputting CSV files and using them for load testing—this lets you
perform tests with different values to simulate risky scenarios and cyber
attacks.

• Embedding API tests into the build process with Jenkins

• Advanced performance testing, with the ability to replay test results

Soap UI is a popular API functional testing tool. Its key features include:

• A large library of functional testing elements that let you automate API
tests

© myredfort.2022

• Fully customizable, provides source code so you can build your own
features

• Easy drag and drop interface to create tests

• Lets you reuse existing load test or security scans for functional tests
In the pro package, lets you perform data-driven testing, simulating how

users work with the API using spreadsheets or databases.

Karate DSL is a Java API testing tool using the behavior-driven
development (BDD) approach. Its key features include:

• Writing BDD for APIs with ready-made step definitions

• Generates standard Java reports

• Does not require Java knowledge to write tests for Java-based APIs

• Enables multi-threaded execution

• Supports switching configuration between staging and production

Fiddler is a tool that monitors and replays HTTP requests, with an API
testing extension for .NET, Java, Ruby, and other popular frameworks. Its
key features include:

• Debugging requests from any type of client—including Windows, MacOs,
Linux, and mobile devices

• Tests cookies, cache, and headers in client-server communication

• Provides a convenient UI for grouping and organizing API requests

• Creates mock requests and responses with no code changes

© myredfort.2022

API Security Best Practices

Use the following best practices to improve security for your APIs:

Identify Vulnerabilities

The only way to effectively secure an API is to understand which parts of

the API lifecycle are insecure. This can be complex, especially if your

organization operates a large number of APIs. It is important to consider the

entire API lifecycle—the API must be treated as a software artifact, which

goes through all the stages of a software product, from planning through

development, testing, staging, and production.

Leverage OAuth

One of the most important aspects of API security is access control for

authentication and authorization. A powerful tool for controlling API access

is OAuth—a token-based authentication framework that allows third-party

services to access information without exposing user credentials.

Encrypt Data

All data managed by an API, especially personally identifiable information

(PII) or other sensitive data protected by compliance standards and

regulations must be encrypted. Implement encryption at rest, to ensure

attackers who compromise your API server cannot make use of it, and

encryption in transit using Transport Layer Security (TLS).

© myredfort.2022

Require signatures to ensure that only authorized users can decrypt and

modify data provided by your API.

Use Rate Limiting and Throttling

As APIs become popular, they become more valuable to attackers. APIs are

now a prime target for denial of service (DoS) attacks. Set rate limits on the

method and frequency of API calls to prevent DoS attacks, and protect

against peak traffic, which can affect performance and security. Rate

limiting can also balance access and availability by regulating user

connections.

Use a Service Mesh

Like API gateways, service mesh technology applies different layers of

management and control when routing requests from one service to the

next. A service mesh optimizes the way these moving parts work together,

including correct authentication, access control and other security

measures.

As the use of microservices increases, service meshes are especially

important. API management is shifting to the service communication layer,

and service meshes can provide automation and security for large

deployments with multiple APIs.

Adopt a Zero-trust Philosophy

Traditionally, networks had a perimeter and elements “inside” it were

trusted, while elements “outside” were not. Networks are no longer that

simple, with insider threats becoming prevalent, and legitimate users often

connecting from outside the network perimeter. This is especially true for

public APIs with users from all over the world, accessing internal software

components and sensitive data.

A zero trust philosophy shifts the security focus from location to specific

users, assets, and resources. It can help you ensure that APIs always

authenticate users and applications (whether inside or outside the

perimeter), provides the least privileges they actually need to perform their

roles, and closely monitors for anomalous behaviour.

Test Your APIs with Dynamic Application Security Testing (DAST)

Bright has been built from the ground up with a dev first approach to test

your web applications, with a specific focus on API security testing.

With support for a wide range of API architectures, test your legacy and

modern applications, including REST API, SOAP and GraphQL.

© myredfort.2022

To compliment DevOps and CI/CD, Bright empowers developers to detect
and fix vulnerabilities on every build, reducing the reliance on manual
testing by leveraging multiple discovery methods:

• HAR files

• OpenAPI (Swagger) files

• Postman Collections

Start detecting the technical OWASP API Top 10 and more, seamlessly
integrated across your pipelines via:

• Bright Rest API

• Convenient CLI for developers

• Common DevOps tools like CircleCI, Jenkins, JIRA, GitHub, Azure
DevOps, and more

Bright Security: Our story

Gadi Bashvitz, COO and President of Bright Security tells us how it all

started and why he thinks it's a game-changer

"Traditional Application Security Testing isn’t keeping up and focuses on detecting known
vulnerabilities. Legacy tools rely on a heuristics-based approach and lengthy and costly
manual testing for finding new issues. This doesn’t scale and results in substantial delays
to remediation, putting your business at risk.”

Bar Hofesh and Art Linkov decided to do something about it. They combined their
experience in cyber security and biologically-inspired machine learning, creating Bright
Security’s AIAST technology, which automates a human’s critical thinking process when
detecting vulnerabilities.

“We think the results speak for themselves with a Dynamic Dynamic Application Security
Testing (DAST) solution that fully automates AppSec testing at scale, allowing
organisations of all sizes to stay ahead of even the most ruthless of hackers. It lets them
comprehensively test, assess and improve their cybersecurity posture regardless of
industry, including software, blockchain, FinTech, IoT, automotive, healthcare, and more.”

© myredfort.2022

